

TDC Readout Rate Measurements

Eric James
September 3rd, 2004
TDWG Meeting

Michigan TDC 101

- Each TDC channel records the state of input signal (0 or 1) once per ns.
- For each L1 accept, the last 2 μs of data is written into one of four on-chip buffers.
- For each L2 accept, the on-board DSP reads out the appropriate on-chip buffer from each TDC chip (96 total) and creates hit words for each pair of 0→1 and 1→0 transitions within the appropriate time window.

Michigan TDC 101 (cont.)

- Hit words are loaded into an on-board FIFO and read out by crate processor over the VME backplane.
- Hits observed in each channel outside of the appropriate time window (but within the 2 μs buffer) must be read out on the older Rev. D boards by the DSP to clear the on-chip buffer.
- On newer Rev. F boards, hits outside the time window can be cleared with a single write.

TDC Readout Time

- The total TDC readout time is a combination of DSP processing time and data readout time.
- However, TDC boards are set up to allow the DSP to process one event while the previous event is being readout over the backplane.
- Therefore, the total TDC readout time is roughly equivalent to the larger of the DSP processing or data readout times.

TDC Readout Time (cont.)

DSP Code Versions

- v37 : Original Version.
- v45: Direct loading of hit words into FIFO (required changing COTD bank format to place header word after data words). Change front-end code and add padding words to allow for concurrent events in FIFO. Add fast clear.
- v65: Change COTD data format to allow for roughly a factor of two reduction in number of hit words per events.

DSP Processing Time (v37 vs. v45)

DSP Processing Time vs # hits per channel

DSP Processing Time (v45 vs. v65)

DSP Processing Time vs # hits per channel

Timing Measurements from Data

v45

DSP Processing Time

Readout Time

Timing Measurements from Data

v65

DSP Processing

Time

Readout

Time

Maximum Readout Rate Tests

- Setup a NIM crate to pulse every COT TDC channel with 1-4 pulses within the relevant time window (no hits outside of time window).
- Use two configurations. One where we pulse only the inner four super-layers and a second where we pulse all eight super-layers.
- Use either a constant calibration trigger or a random "sparky" trigger (both rate adjustable).

v45 calibration trigger results

Hits Per Channel	SL 1-4	SL 1-8
1	2424 Hz	1653 Hz
2	1666 Hz	1007 Hz
3	1293 Hz	748 Hz
4	1053 Hz	582 Hz

Maximum readout rate with ~100% deadtime.

v65 calibration trigger results

Hits Per Channel	SL 1-4	SL 1-8
1	2414 Hz	2200 Hz
2	1739 Hz	1596 Hz
3	1374 Hz	1237 Hz
4	1179 Hz	953 Hz

Maximum readout rate with ~100% deadtime.

Benchmark worst-case readout rate.

v45 Readout Rate versus Deadtime

L2A (Hz)	L3A (Hz)	Deadtime (%)
400	400	0.75
580	550	4.40
730	640	12.00
950	715	23.00

3 hits/channel on SL 1-8.

TDC readout contributes minimal deadtime at L2A ~ 400 Hz even using current DSP v45!

v65 Readout Rate versus Deadtime

L2A (Hz)	L3A (Hz)	Deadtime (%)
496	493	0.49
699	683	2.03
948	880	6.43
1241	1036	15.34
6158	1182	80.65

4 hits/channel on SL 1-4.

v65 Readout Rate versus Deadtime

L2A (Hz)	L3A (Hz)	Deadtime (%)
503	510	1.05
664	691	3.61
825	941	11.77
914	1233	24.56
956	6146	83.47

4 hits/channel on SL 1-8.

Unrealistic worst-case scenario.

Conclusions

- DSP code v45 is readout time limited. Total TDC readout time has a minimal contribution to overall deadtime at L2A \sim 400 Hz.
- DSP code v65 is DSP processing time limited for realistic data sizes.
- Worst case scenario (4 hits on every channel in at least one TDC on every event) gives maximum readout rates of 1180Hz (100% deadtime) and 880 Hz (5% deadtime).